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The locally most powerful test is derived for the hypoth- 
esis that the regression coefficients are constant over time 
against the alternative that they vary according to the 
random walk process. When the regression equation con- 
tains the constant term only, comparisons are made with 
the tests suggested by LaMotte and McWhorter (1978). 
These are based on exact powers and on three different 
types of asymptotic efficiencies including the classical 
Pitman and Bahadur approaches and the new one due to 
Gregory (1980). The concept of the Bahadur efficiency is 
extended to cover also the random slopes. Suggestions 
are made for choosing the test. 
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1. INTRODUCTION 

It is common in time series regression work, in such 
fields as economics, that the statistical relationship under 
consideration may not remain constant over time, but 
appears to be subject to more or less gradual change. To 
deal with this and many other interesting situations, at- 
tention has been paid extensively in recent literature to 
the possibilities of stochastically modeling those changes 
that cannot be accounted for by the systematic part of 
the model. For a review see Rosenberg (1973). For further 
references see also LaMotte and McWhorter (1978). 

The latter authors considered the particular Kalman 
filter or sequential parameter regression model 

consisting of the regression part (1.1) with the observa-
bles y, (random) and x, (p x 1, fixed) and the error terms 
E,,and of thep x 1 vector parameter process (1.2), which 
is defined through the joint distribution of the disturbance 
vectors 6,  and the fixed initial value Po. It is assumed 
here that E r  -N(0, u2)and 6, -N(0, T~ G )with G known 
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but u2and T~ unknown, and that these random variables 
are jointly independent. 

The model is one of the simplest of the possible gen- 
eralizations of the regression model in this direction. The 
constant parameter regression model is itself included as 
the special case T~ = 0. LaMotte and McWhorter pro- 
posed a family of exact tests for the hypothesis p = T ~ /  

u2 = 0 against p > 0. In view of our introductory remarks, 
this testing problem may be regarded as the diagnostic 
problem of establishing whether the simpler constant 
coefficients' regression model would in fact be adequate. 

The purpose of the present article is to make compar- 
isons between the tests of LaMotte and McWhorter and 
the locally most powerful invariant test, the LMPI test 
(to be obtained in Sec. 2), in the special case p = 1, G 
= 1, x, = 1. The special model is one of a random walk 
observed with error. Prediction with this model has been 
extensively studied, and it is closely related to exponen- 
tial smoothing (see Harrison and Stevens 1976). Note, 
however, that the process (1.2) arises in Harrison's and 
Stevens's work from a sequence of consecutive prior 
judgments by the forecaster while its role in our (and most 
other writers') context is simply that of a latent (unob- 
servable) process. 

Our comparisons of the tests are made on the basis of 
exact power calculations and also of asymptotic relative 
efficiency. In Section 2 the tests are introduced. Calcu- 
lations of the critical points of the LMPI test and of the 
powers of the various tests are made in Section 3. These 
calculations show that near the null hypothesis the LMPI 
test is more powerful than any of the LaMotte and 
McWhorter tests. This is, of course, in accordance with 
the optimal character of the LMPI test. At more distant 
alternatives a more powerful test than the LMPI test can 
be found among the LaMotte and McWhorter tests. The 
asymptotic distributions of the test statistics are derived 
in Section 4. The optimal choices of the LaMotte and 
McWhorter tests are given in terms of the Pitman and the 
Bahadur asymptotic efficiencies in Section 5. Surpris-
ingly these results are quite contradictory. Some ap- 
proximate comparisons are made between the LMPI and 
the LaMOtte and McWhOrter tests based On the Pitman 
efficiencies. Tests are also com~ared bv means of an 

efficiency measure due to dregory(1980). 
The picture these is again different 
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from the previous ones. Appendix Sections A. 1 and A.2 
briefly discuss the notions of the Pitman and Bahadur 
asymptotic efficiencies. The Pitman efficiency is treated 
in a general setting allowing different asymptotic distri- 
butions for the competing tests. The definition of the Ba- 
hadur efficiency covers the case where the so-called Ba- 
hadur slope is not a constant but a nondegenerate random 
variable. In Appendix Section A.3 large deviation prob- 
abilities, needed in the asymptotic efficiency calcula- 
tions, are given for linear combinations of X 2  variables 
and ratios of such combinations. 

2. TESTS FOR CONSTANCY OF THE PARAMETER 
PROCESS 

We formulate here three types of tests for the hypoth- 
esis of the constancy of the regression coefficients. It will 
be obvious that the performance of any test must depend 
on the values of the explanatory variables, x,, in the data. 
Consequently, no progress appears possible without the 
study of specific choices of x,. 

Our simple model 

(specified as in (1.1)-(1.2) and with G = 1) has the ad- 
vantage of admitting asymptotic analyses and also of hav- 
ing an interest of its own, as discussed in the Introduction. 
Despite the great simplicity of the model it need not lead 
to untypical results as far as more general models are 
concerned. Thus it turns out that our recommendations 
concerning the choice of the LaMotte and McWhorter 
tests are essentially the same as the ones given by 
LaMotte and McWhorter on the basis of their particular 
example of model (1.1)-(1.2). 

As a departure from the main line of development let 
us briefly consider the situation from the point of view 
of likelihood ratio tests. The model (2.1) can be inter- 
preted as the subfamily of the IMA (1 , l )  processes having 
the MA parameter 0 restricted by 0 < 0 5 1 (Box and 
Jenkins 1970, p. 123). The value 0 = 1 corresponds to 
our null hypothesis. This value is on the boundary of the 
invertibility region 1 0 1 < 1, inside which the maximum 
likelihood estimator of 0 is asymptotically N(0, (1 - 02)/ 
T). Clearly special considerations would be called for if 
maximum likelihood methods were to be employed. Fur- 
ther evidence about the nonregular character of our prob- 
lem is contained in later sections. 

Since no one of our tests will appreciably simplify for 
model (2.1) we shall introduce them in terms of model 
(1.1)-(1.2). We also note that power optimal tests have, 
to our knowledge, not been studied previously for model 
(1.1)-(1.2). 

From (1.1)-(1.2) we write 

Consequently Ey, = x,' Po and 
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so that y = ( y l ,  . . . , yT)' - N(XP0, T~W*(XGX') + 
u21) where X = (x l ,  . . . ,xT)' and W = [min(s, t)], and 
an asterisk denotes the Hadamard (or elementwise) prod- 
uct of matrices. Writing p = and V = W*(XGX1) 
we have that 

We want to test the hypothesis Ho:  p = 0 against H I  : p 
> 0. As noticed by LaMotte and McWhorter (1978) the 
problem is invariant in translations y -+ y + Xb, where 
b is a p x 1 vector. A maximal invariant is Z'y, where 
the columns of Z form an orthonormal basis for the or- 
thogonal complement of the column space of X. We have 

Z'y - N(0, u2(I + pZIVZ)). 

Consider the spectral decomposition 

Z'VZ = A l  P I  + ... + A n  P n ,  (2.2) 

where A l  > A 2  > ... > A n  2 0. Here we have A n  > 0 at 
least if no row of X is in the null space of G, since the 
rank of W*XGXf equals the number of positive diagonal 
elements of XGX' (see Lemma 3.4 in Styan 1973, e.g.). 
Now 

where rk = rank(Pk), k = 1, . . . ,n, these variables being 
independent. LaMotte and McWhorter suggested tests of 
the form I 

where n, = rl + ... + r, and m, = r,+l + ... + rn .  
Under Ho ,  F, - F(n,, m,). LaMotte and McWhorter 
also give some guidance in how to choose the number g, 
primarily on the basis of a set of empirical results. 

Because the problem is invariant not only in transla- 
tions but also in scale transformations, we shall consider 
a further reduction by invariance. It can be shown that 
the most powerful invariant test against the alternative 
hypothesis p = p l  has the critical region 

where @ contains the least squares residuals and 5 the 
generalized least squares residuals. The results may be 
found in King (1980). (Durbin and Watson (1971) gave an 
incorrect expression, the numerator of their statistic 
being 5'5 instead of the correct &I@.)Because the test (2.5) 
depends on p, ,  no UMPI test exists. The locally most 
powerful invariant (LMPI) test is therefore worth ex-
amining. From Durbin and Watson and King we obtain 
that the LMPI test rejects when 

In contrast to (2.4) the distribution of (2.6) is cumbersome 
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to deal with. Writing C = ZZ'y and using the fact that P1 
+ + P, = I with Z, P I ,  . . . ,Pnas above, (2.6) takes 
the form 

n 

hk Y'ZPkZ'y 
' L  = 

k =  1 ,, > c .  (2.7) 
2 y ' z  Pkz'y 

k =  l 

Under Ho the numerator of L is a linear combination of 
independent X2  variables and the denominator a x2 var-
iable. 

3. EXACT DISTRIBUTIONS AND POWER 
COMPARISONS 

In the model (2.1) we have X = 1 = (1, . . . , 1)' and 
V = W with X, V, W as in Section 2. The test (2.6) can 
be written as 

2 min(s, t)(ys - Y)(Y, - 7 )  
L = 

Sf 

2 (yr - .YI2 

In order to derive its distribution we must determine the 
eigenvalues h k ~= hkoccuring in the representations (2.2) 
and (2.7). Here Z is T x (T - I), Z'1 = 0, and Z'Z = 

I. We may begin with a matrix A that transforms y to the 
successive differences 

This A satisfies A1 = 0, is (T - 1) x T, and is of rank 
T - 1. There exists a nonsingular (T - 1) x (T - 1) 
matrix B such that B'AA'B = I. Hence we may choose 
Z = A'B. From (3.2) we see that the component in 
cov(Ay) involving p is u2pI. On the other hand this com-
ponent is u2pAWA' so that AWA' = I. It follows then 
that Z' WZ = B'B. Because the eigenvalues of B'B and 
BB' = (AA1)-I are identical, the eigenvalues of Z'WZ 
are obtainable as the inverse values of those of 

2 -	1 0 ... 0 
2 -1 

A A 1 = [ - i  ...-1 ; :] 
From Anderson (1971, Theorem 6.5.5) we find the latter 
to be 

2(1 - cos(.rrklT)), k = 1, . . . , T - 1. (3.3) 
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The corresponding normalized eigenvectors are 

(sin (nklT), sin (2nklT), . . . , 
sin ((T - l).rrklT)), k = 1, . . . , T - 1. (3.4) 

Together with (2.3) and (2.4), (3.3) now shows, for the L 
in (3.I), that 

T- l 

C h k ~ ( 1+ p h k ~ ) ~ k ~  
k =  l

L - T-I  , (3.5)
C (1 + P A ~ T ) U ~ ~  

k =  1 

where the uk are iid N(0, 1) variables and hkTP1 = 

2(1 - c o s ~ k l T ) ,k = 1, 2, . . . , T - 1. Similarly 

g

2 (1 + pAk~)uk~Ig 


F, - T-1  
k =  1 

. (3.6)
x (1 + P ~ ~ T ) u ~ ~ I ( T 
- g 	- 1) 
k = g +  1 

F, can be computed from the formulas 

F ,  = S,/g 
(SSE 	- S,)/(T - g - 1) ' 

and 

T- 1 

SSE 	= x (yt - Y ) ~ .  
t =  1 

When one uses F, as a test criterion, only tables of the 
F distribution are needed. In order to produce a table for 
the L criterion of (3.1) we have solved c, from 

ci = P(LI(T - 1) > c,) 
T- I 

( h k ~ l ( T- 1) - ca)uk2 > 0 

The numerical computations have been performed using 
Imhof s (1961) technique of inversion of the characteristic 
function. We refer the interested reader to this paper. (A 
minor departure from Imhof s procedure is that the in-
tegration intervals are halved at each step.) Except for 
final round-off errors the results have guaranteed accu-
racy better than .O1 (rImhof s E) in all calculations. 
TableTable2 1we give critical of theofLMPI and the variousshows powerspoints the LMPI statistic. In 

LaMotte and McWhorter tests, and the power envelope 
(largest power attainable). The significance level is .05 
and T - 1 = 20 and 50. We observe that there is no 
uniformly most powerful test among the LMPI and 
LaMotte and McWhorter tests. We can roughly say that 
the LMPI test is the best in the range of its power (0, .4) 
F2 in the range (.4, .5), Fgin (3,.7), F4in (.7, .8), and 
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Table 1. Critical Points of the LMPI Statistic U(T - I )  

NOTE: The last line is adapted from Anderson and Darling (1952) with the kind permission 
of the authors and the Institute of Mathematical Statistics. 

F5 in (3,.9). When the power exceeds .9 the number of 
observations becomes more important. These remarks 
are supported by the asymptotic results (compare the Pit- 
man efficiency in Sec. 4). 

4. ASYMPTOTIC DISTRIBUTIONS AND EFFICIENCY 

We next derive the asymptotic distributions for the 
LMPI test statistic L. 

Theorem 1 .  Under HO: p = 0 

where -% denotes the convergence in distribution and 
u l , u2, . . . are iid N(0, 1) variables. Under H 1: p > 0 

with U 1 , u2, . . . as above. 

Note. The parameter p does not appear in (4.2). Hence 
asymptotically the power of the LMPI test (3.1) is in- 
dependent the alternative-

Pmof. Assume first that p = 0, and let u u 2 , . . . be 
as in the theorem. Then by (3.5) 

T- l 

LIT - k =  
T-

l 
l 

T- '  2 u k 2  

Table 2. Powers of the LMPI and the F, Tests at the Level .05 

Power 
P LMPI 1 2 3 4 5 10 Envelope 

NOTE: The largest powers are bold faced for each p 
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Because the denominator converges to 1 in probability, 
it is sufficient to show that the numerator converges to 
(4.1) in probability. 

Let us recall that A k T  = (2(1 - cosnk/T))-I = (4 
sin2nk/2T)-'. It follows from this that the difference 
T - 2 ~ k T- is positive and increasing with k. To- ( ~ k ) - ~  
gether with the Markov inequality this implies that for 
every E > 0 

P[klI T-'AkT - I uk2> EI( ~ k ) - ~  
k =  1 

T - 1<- ( T - 2 A ~ - 1 , ~- (n(T - I))-').
E 

Since AT- 1 , ~ - 4, (4.1) follows. The result (4.2) is proved 
similarly. 

Notice that the distribution of the right side of (4.1) is 
the same as the limiting distribution of the Cramer-von 
Mises goodness-of-fit test statistic (Anderson and Dar- 
ling 1952, see Table 1.) 

In the same way as Theorem 1 one can prove the next 
theorem. 

Theorem 2. Under the sequence of alternatives p~ = 
= pT-2 + o ( T - ~ )  

m 

LIT--+
d 

T-' 2 (k-2 + p ~ - 2 k - 4 ) ~ k 2 ,(4.3) 
k = l  

where u l ,  u2, . . . are iid N(0, 1) variables. 

The corresponding results for the LaMotte and 
McWhorter tests F, are collected in the next theorem. 

Theorem 3. Let F, be as in (3.8). Then 

(i) gF, aX2(g), under HO 
B 


d k = l(ii) gFg/T- 2 k-'uk2 
, under H 1  


2 k-'uk2 

k = g +  1 

R 

(iii) gF, 5 2 (1 + p(~k)-~)uk ' ,under the se- 
k =  l 

quence P T - ~  + o(T-~) .  

Theorems 2 and 3 are the basis for calculating the Pitman 
asymptotic relative efficiencies. Because the asymptotic 
distributions are not the standard ones we have included 
in Appendix A.l a short note on the Pitman efficiency. 
It follows from Theorem A. 1 and Theorem 3 (i), (iii) that 
the Pitman efficiency of a LaMotte and McWhorter test 
relative to another such test is the square root of the 
ratio of the corresponding numbers p, obtained from the 
equations 

B 

P[ (1 + p,(nk)-')uk2 > xm2(g)] = Y O  (4.4) 
Lk- l A 

with xm2(g) the Upper a critical point of the x2(g) distri- 
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bution, g = 1, 2, . . . . This efficiency measure depends 
on a and yo. Table 3, in which some numerical values 
are given, suggests that in general the departure from 
optimality is not severe when 3 Ig 5 8, that the depen- 
dence on a for fixed yo is not strong, and that the de- 
pendence on yo for fixed a is more important. As for the 
efficiency of the LMPI test with respect to the LaMotte 
and McWhorter tests, its computation seems to be a for- 
midable task, since we must solve p~ (Theorems A.1, 1 
and 2) from 

where c, is the asymptotic critical point of the LMPI test. 
Therefore we have, instead, solved pL from the equation 

where x l ,  . . . ,xlo are iid X2(v) variables. The constants 
a ,  b, v are found by fitting the first three moments of the 
random variables in (4.6) to those of the variables in (4.5). 
The accuracy of this approximation is checked by com- 
paring the probabilities (4.5) and (4.6) when pL = 0 and 
a = -01, -05, .10 (.lo), .90, .95, .99. The approximation 
differed from the correct probabilitiy by not more than 

Table 3. The Pitman Asymptotic Relative 

Efficiencies of the LMPI and F, Tests 


a = .05, yo  = .6 a = .05, yo  = .8 

9 ~e f ~ 3 / ~ g ) ' / ~  Pe (PS/PS)'/~ 

279.3
273.4 

.989 
1 .OOO 

535.7 
51 5.3 

,975
,994 

6 274.2 ,999 509.4 1 .OOO 
7 277.2 .993 509.5 1 .OOO 
8 
L 

281.4 
445.1 

.986 

.784 
51 2.8 ,997 

NOTE: For every combination of a and yo the first column contains the solution of (4.4) 
and (4.5) and the second the efficiencies with respect to the optimal choice. 
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four digits in the fourth decimal. Numerical values from Proof. From a theorem of Zolotarev (1961) we obtain 
(4.6)are given in Table 3 .  that 

Although the Pitman efficiency does not seem to de- m 

pend strongly on the usual significance levels for fixed 
yo ,  the limiting Pitman efficiency, as ci -, 0 ,  gives quite 
a different picture of the situation. Keeping yo fixed we 
deduce from (4 .4)that 

xa2(s)lim = d ,  
a-0 p g b ,  yo) 

and from (4 .5)that 

lim 
C a  

= d ~ ,  
a-0 PL(% 7 0 )  

where d ,  and d~ satisfy 

and 

Using Lemma A.3 . l ( i )we obtain that the limiting Pitman 
efficiency of F ,  with respect to F,, is [d , ld , , ]1 /2and that 
of the LMPI test with respect to F, is ~ r [ d ~ l d , ] ' / ~ .Be-
cause d ,  is an increasing function of g ,  there is no opti- 
mum choice of g .  We also note that the LMPI test is more 
efficient than F 1 in the limit. 

This result suggests (as pointed out by an associate 
editor) also considering tests where g = g ,  + ,X as T -
03. However, it turns out that while there exists an asymp- 
totic distribution for F,, (appropriately normed) for cer- 
tain sequences of alternatives p T  the appropriate rate of 
convergence in p ~ -0 is of lower order than T P 2 .Con-
sequently, the Pitman efficiency of F,, relative to F ,  or 
L is zero. 

Because the Pitman efficiency depends on a and y o ,  
Gregory (1980) has suggested an efficiency measure that 
is the limiting ratio of the asymptotic powers themselves 
when ci -,0 .  Contrary to the Pitman efficiency this does 
not have the interpretation of being a limiting ratio of 
numbers of observations. The following theorem shows 
that in the sense of this measure the LMPI test is optimal 
among the tests considered here. 

Theorem 4 .  If X , 2 ( g )  and c ,  are as before then 

-- 03 for g > 1 ,  

= c >  1 f o r g  = 1 .  

( ( ~ k ) - '+ p ( ~ k ) - ~ ) ~ k ~> C ,  

lim = C LI 

a - + ~  P [ ( T - ~+ p w 4 ) u 1 2> c,]  

and 

( 1  + p(nk)-')uk2 > x m 2 ( g )  
lim = C ,I 

a-0 P[(1  + pn -2)u12 > X , 2 ( g ) ]  

exist. Using 1'Hospital's rule and Lemma A.3.1 we fur- 
ther obtain that 

P [ ( T - ~+ p ~ - 4 ) ~ 1 2> c,]
lim 
a-0 P[(1  + pn - 2 ) ~ 1 2  > xa2(g) ]  

( 
[ ~ , / ( n - ~p n 4 ) 1' I 2+ 

= lim 
a-0 [ x a 2 ( g ) / ( l+ pn - 2 ) 1  - l l 2  

where 0 = p/(n2 + p ) .  The case g > 1 is thus proved. 
Because 

the limit in the case g = 1 has the value 

It is easy to see that the general factor in the product (4 .7)  
is an increasing function of 0 and for 0 = 0 it equals one. 
Hence the proof is complete. 

From the proof of the theorem it is clear that the choice 
g = 1 is the most efficient in the Gregory sense among 
the LaMotte and McWhorter tests. However, we cannot 
infer that at small significance levels the LMPI or F 1 test 
would have any optimum properties in the Pitman sense, 
because if a converges to zero then p increases without 
bound for fixed yo in (4 .4)and (4 .5) .  

Another common efficiency measure is due to Ba- 
hadur. This involves calculation of the so-called exact 
slope of the test statistic (Bahadur 1971). In departure 
from the general theory there exists in our problem no 
nonrandom exact slope. In Appendix A.2 we extend the 
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notion of an exact slope to include slopes that are non- 
degenerate random variables. Therefore we have added 
a note also on the Bahadur efficiency in Appendix A.2. 
From Theorem A.3.1 and the proof Theorem 1, we obtain 
that under HO 

~ o ~ P ( T - ~ L > ~ ~ )1
lim = - log (1 - .rr2b), 
T-+m T 2 

if bT -) b, 0 < b < IT-^. Then Theorem 2 and (A.2.3) 
imply that the LMPI test has the efficacy -Ilog(1 -
r2bL) where bL is determined by 

Similarly the efficacies for the LaMotte and McWhorter 
tests are -Ilog (1 - b,), g = 1, 2, . . . , where each b, 
is the solution of 

The asymptotic relative efficiencies are the ratios of these 
efficacies. We have made no (exact or approximate) nu- 
merical calculations. However, we see from (4.8) and 
(4.9) that the LMPI test is more efficient than the LaMotte 
and McWhorter test F 1 .From (4.9) we find that with g 
b, increases to 1 and consequently -f log (1 - b,) in-
creases without bound. Hence the Bahadur efficiency and 
the limiting Pitman efficiency, although not the same, be- 
have similarly and do not offer a practical means to 
choose among the tests F,. 

5. CONCLUSIONS 

We have compared the LMPI test and the tests sug- 
gested by LaMotte and McWhorter (1978) on the basis 
of exact powers and three different asymptotic efficiency 
measures due to Pitman, Bahadur, and Gregory, the last 
one dating from 1980. Only the Pitman efficiency, which 
depends on the significance level a and the required 
power yo, seems to agree reasonably with the exact pow- 
ers. The Bahadur efficiency and also the limiting Pitman 
efficiency (as a -,0) provide reliable comparisons in sit- 
uations with finite numbers of observations only when 
extremely small significance levels are used. These con- 
clusions conform with findings made in other contexts 
(Groeneboom and Oosterhoff 1981). The Gregory effi- 
ciency seems to reflect the fact that one can make the 
range of the parameter values where the LMPI test is 
superior to the LaMotte and McWhorter tests as large as 
one may wish by sufficiently decreasing the significance 
level. Contrary to the Pitman and the Bahadur efficiencies 
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this limiting process is accomplished without any refer- 
ence to the power attained. 

Primarily on the basis of the exact powers and the Pit- 
man efficiency we make the following rough recommen- 
dations for choosing a test in practice. If the alternatives 
very near the null hypothesis are important then use the 
LMPI test. If attention is focused on alternatives where 
the best test has power between .6 and .8, then choose 
one of the LaMotte and McWhorter tests F3 ,  F4,  or F s .  
If the number of observations is large and very remote 
alternatives are of concern, then use F, for some g > 5. 

The application of the LaMotte and McWhorter tests 
almost always needs a computer. On the other hand the 
LMPI test needs a separate table or a computer program 
for calculating the significance probability. The usual ta- 
bles of the F distribution suffice for the LaMotte and 
McWhorter tests. 

APPENDIX 

A.l Pitman Efficiency 

The usual method of computing the Pitman (asymptotic 
relative) efficiency of two tests is inapplicable in our prob- 
lems, because the limiting distributions of the competing 
test statistics are of different types. As a rule the eval- 
uation of Pitman efficiencies takes for granted that 
through appropriate norming the asymptotic distributions 
are normal or X2 distributions. However, it turns out that 
the Pitman efficiency can be computed directly from the 
asymptotic powers and without reference to the method 
of finding the latter. ' 

Let 0 be a real parameter indexing a family of distri- 
butions and consider the hypotheses 

We want to compare, at the level of significance a ,  two 
tests based on statistics TI, and T2,, having power func- 
tions y 1,(0) and y2,(8), respectively, where n is the num- 
ber of observations. Let us denote 

where 6, > 0, r > 0, and 6, -) > 0. We assumethat 
the limits 

lim yin(0,) = yi(6), i = 1, 2 

(depending only on i and 6) exist for all such sequences. 
If there exists a sequence of natural numbers N, -+ 
such that 

then the limit 

1 In 
lim -1 IN, = ep = ep(yo, a )  

is called the Pitman efficiency of TI, with respect to T2,. 
The efficiency measure ep is approximately the ratio 

of the number of observations needed to obtain the power 
yo at the level a under the same sequence of alternatives. 
Generally ep depends on yo and a. 
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Theorem A.1. If a1and 82 are such numbers that ~ ' ( 8 1 )  in distribution. Bahadur (1971, Theorem 7.2) assumes 
= ~2(82)= yoand y I ,  y2are strictly increasing functions 
then 

ep = [82/81]1'r. 

Proof. This follows from a computation that may be 
found in Rao (1973, p. 469). Let 0, = 00 + (,,Inr, where 
en+ z l .  Then 

S n  .&= l i m y 2 ~ . ( 0 0 + [ ? ] ~ . ~  Nnr) 
= y2(epr81) 

for Nnln + ep and SN,, + 8I .  Hence 82 = epr8I .  

As a corollary it is easy to see that if yi(8) = h(ci8 + 
ba), where ci is positive and h strictly increasing and only 
ba depends on a ,  we have ep = ( C ~ I C ~ ) ~ " ,this quantity 
being independent of a and yo. With h the standard nor-
mal distribution function this example is the one occur-
ring most frequently in applications. In our problems it 
does not. Neither does the independence of a and yo ob-
tain. 

A.2 	Bahadur Efficiency 

Let us now consider the testing problem of Appendix 
A. 1from the point of view of the Bahadur efficiency. The 
idea of the Bahadur efficiency is to keep the alternative 
fixed and let the size of the test decrease at the rate 
needed to obtain the required power. This is formalized 
in the following. 

Definition. Let Ti,, i = 1, 2 be two sequences of test 
statistics such that large values of each lead to rejection 
of the hypothesis 0 = 00 in favor of the alternative 0 > 
00. Let yo E (0, 1) be given and suppose that a, + 0 is 
a sequence of significance levels and n ~ , ,n2, two se-
quences of numbers of observations (depending on 0) 
such that 

lim Pe(Tiniv>ci,)+y0,  i = 1, 2, 
w m  

where the ci, are the critical points at the level a,. Then 
the limit 

lim 	-11n1, 
= e~ = eB(O,yo), 

-m 	 lln2, 

if it exists and is independent of a,, is called the Bahadur 
efficiency of TI, with respect to T2n. 

Bahadur has shown that this definiton is applicable in 
a large class of testing problems (see Bahadur 1971, e.g.). 
In fact, the concept of efficiency is only taken up in his 
work when the class in question has already been defined 
and then in order to elucidate the notion of an exact slope. 
The problems considered in this article, however, fall out-

that the Bi(0) are constants (i.e., nonrandom) while we 
also admit nondegenerate random variables. (The reader 
may note that T, occurs only through Tinlnrso that the 
choice of (Tin,r) isjust a matter of convenience. Bahadur 
(1971) always has r = i.) 

From (A.2.l)and our definiton it is deduced that ifBi(0) 
is nonrandom, then 

If Bi(B)is nondegenerate and if there exists a unique num-
ber bi(0) such that Pe(Bi(0) > bi(0)) = yo, then 

(civlnivr)+ bi(0). 

Analogously to the theory of Bahadur it is true in our 
problems that 

lim 	log Po0 (niwWrTin.. > b,) = -
w3j ni, 

for some (continuous) gi and any sequence b, converging 
to We then have that 

log% log Pe, (Tin,,lni,' > ciulniur)
lim -= lim 
w- ni, 	 nivW-

= -gi(bi(0)), i = 1, 2. (A.2.3) 

It follows that the Bahadur efficiency of TInwith respect 
to T2n is 

e~ = [g1(b1(0))/~2(b2(0))1. 

A.3 	Tail Probabilities for Linear Combinations of 
X2 Variables and Their Ratios 

Let X I ,X2, . . . be a sequence of independent X2 var-
iables with r l ,  r2,  . . . degrees of freedom, respectively, 
and let Al, A2, . . . be a strictly decreasing sequence of 
positive numbers. We denote by G, the X2(rn)distribu-
tion function. The following lemma is a consequence of 
a theorem by Zolotarev (1961) (see also Hoeffding 1964, 
and Gregory 1980). 

Lemma A.3.1. Let F be a distribution function of the 
random variable 2~ k (it exists if~ k 2rkhk converges), 
and further let x, = F - '(1 - a)  and ya = G,-'(1 -
a). Then 

(i) lim X a  - = A 1  

a-0 Y a  


(ii) lirn ya - X a  -
a-o A 1 

-- -w, 	 if m < r l  

= l o g  n 1 - - , i f m = r l[ ( ::>"I 
side the class considered by Bahadur. 	 = 03, if m > r l  

We shall suppose that, for some r, 
The next result will be published elsewhere and is given 

Tinlnr-+ Bi(0), i = 1, 2 (A.2.1) here without proof. 
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Theorem A.3.1. Let A I,, . . . , A,, , n = 1 ,  2 ,  . . . be 
sequences of numbers such that 

( 1 )  max I Akn - hk I + 0, when n + m, 
I s k c ,  

( 2 )  h ,,A * ,  . . . is a strictly decreasing sequence of num- 
bers converging to 0. 

Then 

where N, = r l  + ... + r, ,  and b , +  b .  
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REFERENCES 
ANDERSON, T. W. (1971), The Statistical Analysis of Time Series, 

New York: John Wiley. 
ANDERSON, T.W., and DARLING, D.A. (1952), "Asymptotic The- 

ory of Certain 'Goodness of Fit' Criteria Based on Stochastic Pro- 
cesses," The Annals of Mathematical Statistics, 23, 193-212. 

Journal of the American Statistical Association, December 1983 

BAHADUR, R.R. (1971), Some Limit Theorems in Statistics, Phila-
delphia: Society for Industrial and Applied Mathematics. 

BOX, G.E.P., and JENKINS, G.M. (1970), Time Series Analysis, Fore- 
casting and Control, San Francisco: Holden-Day. 

DURBIN, J., and WATSON, G.S. (1971), "Testing for Serial Corre- 
lation in Least Squares Regression. 111," Biometrika, 58, 1-19. 

GREGORY, GAVIN G. (1980), "On Efficiency and Optimality of Quad- 
ratic Tests," The Annals of Statistics, 8, 116-13 1 .  

GROENEBOOM, P., and OOSTERHOFF, J .  (1981), "Bahadur Effi-
ciency and Small-Sample Efficiency," International Statistical Re- 
view, 49, 127-141. 

HARRISON, P.J., and STEVENS, C.F. (1976), "Bayesian Forecast- 
ing," Journal of the Royal Statistical Society, Ser. B, 38, 205-247. 

HOEFFDING, W. (1964), "On a Theorem of V.M. Zolotarev," Theory 
of Probability and Its Applications, 9, 89-91. 

IMHOF, J.P. (1961), "Computing the Distribution of Quadratic Forms 
in Normal Variables," Biometrika, 48, 419-426. 

KING, M.L. (1980), "Robust Tests for Spherical Symmetry and Their 
Applications to Least Squares Regression," The Annals of Statistics, 
8, 1265-1271. 

LAMOTTE, LYNN ROY, and McWHORTER, ARCHER, JR. (1978), 
"An Exact Test for the Presence of Random Walk Coefficients in a 
Linear Regression Model," Journal of the American Statistical As- 
sociation, 73, 816-820. 

RAO, C.R. (1973),Linear Statistical Inference and Its Applications (2nd 
ed.), New York: John Wiley. 

ROSENBERG, BARR (1973), "A Survey of Stochastic Parameter 
Regression," Annals of Economic and Social Measurements, 2,381-
397. 

STYAN, GEORGE P.H. (1973), "Hadamard Products and Multivariate 
Statistical Analysis," Linear Algebra and Its Applications, 6, 217- 
240. 

ZOLOTAREV, V.M. (1961), "Concerning a Certain Probability Prob- 
lem," Theory of Probability and Its Applications, 6, 201-204. 




